

STEAM CRACKING

STEAM CRACKERS : LOCATION, FEEDSTOCKS AND PRODUCTS

WHAT YOU NEED TO KNOW ABOUT ORGANIC CHEMISTRY

PONA <u>P</u>ARAFFINS, <u>O</u>LEFINS, <u>N</u>APHTHENES & <u>A</u>ROMATICS

Tyread his wings of poor horizonday

A LITTLE HISTORY

Ethylene from cracking ethane

□ Steam cracking requires **extreme** process conditions :

- Cracking temperature : 800 850°C
- Residence time : 0.1 0.5 sec
- Cracking pressure : slightly higher than atmospheric pressure
- Dilution of the feed with large quantities of steam : ~0.6 T of steam per 1 T of naphtha feed

FEEDSTOCKS AND YIELDS

YIELDS FOR NAPHTHA

STANDARD YIELDS FOR NAPHTHA

YIELDS FOR VARIOUS FEEDSTOCKS

WORLD BREAKDOWN OF FEEDSTOCKS

NATURE OF FEEDSTOCKS	ETHANE LPG	NAPHTHA	DIESEL FUEL DISTILLATES
WESTERN EUROPE	16	74	10
NORTH AMERICA	75	18	7
JAPAN	3	97	-
WORLD	42	52	6

WORLD BREAKDOWN OF FEEDSTOCKS FOR ETHYLENE PRODUCTION

INVESTMENT AND ECONOMICS

INVESTMENT AND ECONOMICS

□ Steam crackers are complex facilities that require **important** investments

□ Key figures for various feedstocks for a 500 kT/year ethylene production, based in Europe :

FEEDSTOCK	ETHANE	NAPHTHA	DIESEL FUEL
Minimum investment (M\$)	350 - 400	450 - 550	550 - 650

□ Pyrolysis furnaces account for ~40% of investments (~200M\$)

□ The remaining ~60% for separation and purification facilities (~300M\$)

INTRODUCTION

INTRODUCTION

□ A typical steam cracker plant is made of 3 parts :

1. The hot zone :

- Pyrolysis or cracking furnaces
- Quench exchangers and quench ring
- Separation columns and splitters of the hot separation train

2. The compression zone

- A cracked gas compressor
- Purification and separation columns
- Dryers

3. The cold zone

- The cold box
- A methanation reactor
- Separation columns and splitters of the cold separation train
- C2 and C3 converters
- A gasoline hydrostabilization reactor

THE HOT ZONE

Tyrnai ha wings of your harminigs

Training

PROBLEMS ASSOCIATED WITH STEAM CRACKER FURNACES

• CREEP :

Slow elongation due to temperature

• CARBURIZATION OF THE TUBES :

Enrichment in carbon of the tubes from its inside surface

• EROSION :

Due to high speed of gases inside the tubes

• FATIGUE :

Due to repeated thermal cycles

MECHANISM OF COKE FORMATION

PYROLYSIS FURNACE ADJUSTMENT PARAMETERS

1. Influence of cracking temperature :

NAPHTHA COMPOSITION	% Vol
PARAFFINS	80
NAPHTHENES	15
AROMATICS	5
Dilution stoom the of food	
Dilution steam t/t of feed	0.6
Dilution steam t/t of feed	U.6
Dilution steam t/t of feed	U.6

PYROLYSIS FURNACE ADJUSTMENT PARAMETERS

2. Influence of residence time :

□ In the 1950's :

- Residence time ~ 0.7 to 1 sec
- Ethylene yields ~ 22%

□ In the 1960's :

- Residence time ~ 0.2 to 0.4 sec
- Ethylene yields ~ 28%

□ In the past few years :

- Residence time ~ 0.05 to 0.1 sec
- Cracking temperature ~ 900°C

% WEIGHT CRAC		CRACKING Conventional furnace	NAPHTHA m-Sec furnace
Hydrogen	H ₂	0.9	1.1
Methane	CH_4	15.8	14.9
Ethylene	C ₂ H ₄	28.6	32.2
Propylene	C_3H_6	15.0	14.3
Butadiene	C_4H_6	4.4	3.6
Gasoline	C ₅₋₂₀₀	21.7	18.9

PYROLYSIS FURNACE ADJUSTMENT PARAMETERS

3. Influence of pressure :

A lower operating pressure :

- promotes light olefins formation
- reduces coke

□ Steam cracker furnaces are operated at the lowest pressure possible by :

- maintaining the output pressure of the furnaces at a value as close as possible to atmospheric pressure
- reducing the pressure of hydrocarbons by injection of steam

STEAM CRACKER FEED	STEAM (t) / HC (t)
ETHANE – PROPANE – BUTANE	0.3 – 0.4
NAPHTHA	0.5 – 0.6
DIESEL FUEL	0.6 - 0.8

THE COMPRESSION ZONE

PRODUCT	FORMULA	% Weight	
Hydrogen	H ₂	1.1	Separation of hydrogen with 95% purity for downstream hydrogenation units
Methane	CH_4	16.2	Recovery of methane for use as internal fuel
Ethylene	C ₂ H ₄	29.2	Required purity : 99.95 % weight
Acetylene	C_2H_2	0.3	Separated and eliminated
Ethane	C ₂ H ₆	7.2	Recycled back to ethane cracking furnaces
Carbon monoxide Carbon dioxide Hydrogen sulfide	CO CO ₂ H ₂ S	0.15	Impurities and catalyst poisons to be removed and eliminated
Propylene	C ₃ H ₆	14.3	Required purity : 99.5 % weight
Propane	C ₃ H ₈	0.5	
Propyne Propadiene	C_3H_4 C_3H_4	0.5	Separated and eliminated
C4 cut		8.45	Recovery of butadiene and removal of acetylenics
Gasoline	C ₅₋₂₀₀	19.8	Elimination of unstable diolefins and recovery of benzene
Water	H ₂ O	2.3	Removal of water to avoid clogging at low temperatures by formation of hydrat

COMPRESSION – WASHING – DRYING

THE COLD ZONE

C2 CUT : SELECTIVE HYDROGENATION

C2 CUT : SELECTIVE HYDROGENATION

C2 CUT	% Weight
ETHANE	19
ETHYLENE	80
ACETYLENE	1

ACETYLENE SPECIFICATION

< 5ppm

< 0.0005%

C3 CUT : SELECTIVE HYDROGENATION

C3 CUT : SELECTIVE HYDROGENATION

C3 CUT	% Weight
PROPANE	3 – 5
PROPYLENE	85 – 92
PROPYNE	3 – 6
PROPADIENE	2 – 4

PROPYNE / PROPADIENE SPECIFICATION

< 3-4 %

SELECTIVE HYDROGENATIONS

HYDROSTABILIZATION OF STEAM CRACKED GASOLINE

SELECTIVE HYDROGENATIONS

A TYPICAL STEAM CRACKER PLANT

A TYPICAL STEAM CRACKER PLANT

Epressi has wing referent horizoinly:

WHAT'S NEXT ?

Episted has being of grow have visible